organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Richard Gilardi,^a* Robin N. Evans^a and Gerald E. Manser^b

^aLaboratory for the Structure of Matter, Naval Research Laboratory, Washington, DC 20375-5341, USA, and ^bAerojet Propulsion, Sacramento, CA 95813, USA

Correspondence e-mail: gilardi@nrl.navy.mil

Key indicators

Single-crystal X-ray study T = 93 KMean $\sigma(\text{C}-\text{C}) = 0.001 \text{ Å}$ R factor = 0.036 wR factor = 0.102 Data-to-parameter ratio = 12.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3,3-Bis(difluoroaminomethyl)oxetane, a promising new energetic material

The title compound, a promising new energetic material, 3,3bis(difluoroaminomethyl)oxetane, $(F_2NCH_2)_2C(CH_2)_2O$ or $C_5H_8F_4N_2O$, contains two difluoroamine (NF_2) substituents, rather uncommon energetic groups, which tend to be disordered in crystal structures. The molecule occupies a special position on a twofold axis, and its two equivalent difluoroamine groups show no signs of disorder.

Comment

Energetic polymers appropriate for use as elastic binders in solid propellants can be made by adding energetic groups to oxetane, the four-membered ring in the title molecule, (I). If a mixture of different oxetanes and an appropriate catalyst are used for starting materials, copolymerization of the oxetanes occurs; this is a promising method for designing energetic materials with specific handling properties, while also adding energy to be released during combustion. The crystal structures of two energetic oxetanes were reported by George & Gilardi (1986), where the substituent arms contained the conventional energetic nitramine $(N-NO_2)$ and nitrate $(O-NO_2)$ groups.

In (I), the added energetic moieties are the more unconventional difluoroamine (NF_2) groups.

Fluoroamine-rich materials are a newly emergent area of energetic materials synthesis, and they are expected to lead to significant increases in propellant and explosive energy densities. Difluoroamines (NF₂ compounds) are predicted by theoretical calculations to perform especially well as propellants (Miller, 1996).

The difluoroamine grouping can be a very sensitive and dangerous addition to organic molecules. Compounds containing it should only be synthesized in an explosion-proofed laboratory by an experienced explosives chemist. As a result, there are not many structure determinations of the NF₂ group in the literature. However, in recent years, several quite stable compounds containing NF₂ [such as (I)] have been discovered. Butcher *et al.* (2002) reported four such compounds, and reviewed the five prior reports of NF₂-

Received 29 August 2003 Accepted 24 November 2003 Online 29 November 2003

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecule of (I), showing 50% probability atomic displacement ellipsoids.

Figure 2

The packing of (I), viewed down the *b* axis of the unit cell. The six planar oxetane rings, located on the twofold axes at $x = 0, \frac{1}{2}$ or 1, and $z = \frac{1}{4}$ or $\frac{3}{4}$. overlap because they are seen edge-on in this view.

containing molecules. Their conclusions were that the NF₂ group always displays an extremely pyramidal structure, with an average F-N-F angle of 100.1 (7)° and an average C-N-F angle of 105.2 $(7)^{\circ}$. Both are considerably smaller than the usual sp^3 'tetrahedral' angle of 109.5°.

In molecule (I), which occupies a special position on a twofold axis, the corresponding angles, F5A-N5-F5B, C4-N5-F5A and C4-N5-F5B, are 100.85 (7), 103.92 (8) and 104.44 (8)° (Fig. 1), so the NF₂ group in this molecule is also pyramidalized 'beyond tetrahedral'. The N-F distances in (I) are 1.412 (1) and 1.425 (1) Å, slightly longer than noted for N-F in prior determinations [mean 1.392 (9) and range 1.358–1.413 A; Butcher et al., 2002]. The single independent $C-NF_2$ distance in (I) is 1.475 (1) Å, slightly shorter than those reported by Butcher et al. (2002), which averaged 1.500 (7) Å, with a range of 1.489–1.511 Å.

Perfluorinated groups are often 'floppy' or extreme in their thermal vibrations, and sometimes even display a disordered mix of conformations [see Flippen-Anderson et al. (2001) for database statistics on -CF₃, and BF₄⁻ and PF₆⁻ anion disorders]. Librational disorder was especially pronounced in the crystal structure of 3,3,7,7-tetrakis(difluoroamino)octahydro-1,5-dinitro-1,5-diazocine, a very energetic compound, known as HNFX, containing four NF₂ groups (Chapman *et al.*, 1999); its refinement required disordered NF2-group conformer pairs differing in rotation about the $C-NF_2$ bond by approximately 120°, and the application of group-similarity constraints to all conformers.

Molecule (I) shows no sign of disorder or large vibrations; the principal axes of the atomic displacement ellipsoids for the F atoms are comparable to those on the ring O atom at the opposite end of the molecule. Although there are no particularly close intermolecular approaches (a packing diagram is shown in Fig. 2), the pendant NF₂ groups are effectively constrained by inter- and intramolecular neighboring atoms at or near usual van der Waals contact distances (Rowland & Taylor, 1996).

Experimental

The title compound was synthesized at Aerojet Propulsion by Dr Manser. Details of the synthesis will be reported elsewhere. Crystals were grown at the Naval Research Laboratory from 2-butanone by slow evaporation.

877 independent reflections

 $R_{\rm int} = 0.060$ $\theta_{\rm max} = 28.2^\circ$ $h = -12 \rightarrow 13$

 $k = -14 \rightarrow 14$ $l = -8 \rightarrow 8$

840 reflections with $I > 2\sigma(I)$

Crystal data

$C_5H_8F_4N_2O$	$D_x = 1.728 \text{ Mg m}^{-3}$
$M_r = 188.13$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 2766
a = 10.3304 (13) Å	reflections
b = 10.6065 (13) Å	$\theta = 2.9-28.5^{\circ}$
c = 6.8638 (8) Å	$\mu = 0.19 \text{ mm}^{-1}$
$\beta = 105.931 \ (2)^{\circ}$	T = 93 (2) K
$V = 723.18 (15) \text{ Å}^3$	Rounded chunk, colorless
Z = 4	$0.70 \times 0.65 \times 0.60 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	
diffractometer	
φ and ω scans	
Absorption correction: by integra-	
tion (Wuensch & Prewitt, 1965)	
$T_{\min} = 0.858, T_{\max} = 0.919$	
2995 measured reflections	

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0627P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.036$ + 0.609P] where $P = (F_o^2 + 2F_c^2)/3$ $wR(F^2) = 0.102$ S = 1.00 $(\Delta/\sigma)_{\rm max} = 0.002$ $\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \mathring{A}}^{-3}$ 877 reflections $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$ 72 parameters Only coordinates of H atoms refined

All four H atoms are bonded to methylene C atoms. Their positional parameters were refined and their U_{iso} values were set equal to $1.2U_{eq}$ of the parent C atom. The C-H bond distances range from 0.93 (2) to 0.99 (2) Å.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXTL (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge financial support from the Office of Naval Research, Mechanics Division.

References

- Bruker (2001). SMART (Version 5.624) and SAINT (Version 6.04). Bruker AXS Inc., Madison, Wisconsin, USA.
- Butcher, R. J., Gilardi, R., Baum, K. & Trivedi, N. J. (2002). Thermochim. Acta, 384, 219-227.

- Chapman, R. D., Gilardi, R. D., Welker, M. F. & Kreutzberger, C. B. (1999). J. Org. Chem. 64, 960-965.
- Flippen-Anderson, J. L., Deschamps, R. D., Gilardi, R. D. & George, C. (2001). Cryst. Eng. 4, 131–139.
- George, C. & Gilardi, R. (1986). Acta Cryst. C42, 1161-1164.
- Miller, R. S. (1996). Mater. Res. Soc. Symp. Proc. 418, 3-14.
- Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391. Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.

 - Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
 - Wuensch, B. & Prewitt, C. (1965). Z. Kristallogr. 122, 24-59.